新发现的大脑回路控制对咸味的厌恶

作者:change?  于 2023-11-22 03:50 发表于 最热闹的华人社交网络--贝壳村

通用分类:留学生活|已有1评论

Newly Discovered Brain Circuit Controls An Aversion to Salty Tastes

食盐形式的钠有助于使炸薯条成为美味小吃,使培根成为美味佳肴,但它也是我们身体正常运作的重要营养素,在肌肉运动和神经元信号传导中发挥作用,以及许多其他重要过程。

体内含有适量的钠非常重要,事实上,您大脑的某些部分会努力工作以确保您获得所需的盐。如果你突然想吃薯片,那可能是你的大脑在起作用。另一方面,如果你口渴,咸味零食听起来可能是你最最不想吃的东西。现在,加州理工学院科学家的新研究向我们展示了更多关于当盐的味道令人厌恶或美味时大脑如何调节的信息。

“低浓度的钠是可口的,而高浓度的钠——例如海水——尝起来很恶心,”生物学教授和遗产医学研究所研究员 Yuki Oka(岡祐樹) 说。 “但当你真的需要盐时,你不会介意不好的味道。盐的适口性或‘味道’会根据盐的浓度和身体内部的钠需求而变化。”

身体精心调节血钠水平,使其保持在 135 至 145 毫摩尔的狭窄范围内。这是通过精确控制盐的消耗和保留来实现的。为了保持钠含量精确平衡,大脑必须控制对盐的吸引力和厌恶。 2019 年,Oka实验室的研究人员发现了老鼠对盐的渴望的大脑回路。刺激这些位于头骨底部后脑区域的“盐食欲”神经元,会立即引发对咸味食物的食欲。但调节厌恶咸味的机制仍然没有答案。

Yuki Oka实验室的新发现揭示了小鼠大脑中独特的神经回路,负责调节对与钠相关的负面味道的耐受性。这些神经元位于前脑,远离盐食欲神经元。与之前发现的盐食欲神经元不同,耐受神经元的激活不会促使主动寻找钠。相反,这些神经元的活动使小鼠能够接受或耐受通常令人厌恶的高浓度盐,以便有效补充体内的钠水平。阻断耐受神经元会导致小鼠排斥厌恶的盐,即使钠含量较低。前脑耐受性和后脑食欲回路的同时运行对于维持体内钠水平至关重要。

研究人员发现,耐受神经元与盐食欲神经元并不直接相连,并且似乎独立发挥作用。那么,身体如何调节新发现的回路的活动呢?

有趣的是,这项新研究表明,耐受神经元的表面有前列腺素 E2 (PGE2) 激素的受体,这表明它们的活动受到血液中循环的这种激素的调节。这是一个新的发现——通常与炎症有关的前列腺素此前并未与钠摄入量相关。 Oka 实验室的研究生、这项新研究的主要作者张亚萌表示:“前列腺素和钠摄入量之间这种意想不到的关联提出了关于炎症状态如何影响钠摄入量的重要问题,为了解前列腺素和钠摄入量之间的相互作用提供了新的见解。钠含量和身体的促炎状况。”

11 月 20 日发表在《细胞》杂志上的一篇论文报道了这一结果。

这篇论文的标题是“平行神经通路控制钠消耗和味觉效价”。研究生张亚萌为第一作者,加州理工学院的其他共同作者包括研究生王童童、前博士后学者 Allan-Hermann Pool(现为德克萨斯大学西南分校助理教授)、博士后学者刘璐、和前加州理工学院本科生Elin Kang。其他贡献者来自 Spatial Genomics Inc(Bei Zhang、Liang Ding 和 Kirsten Frieda)和华盛顿大学(Richard Palmiter)。该研究得到了美国国立卫生研究院、阿尔弗雷德·P·斯隆基金会、纽约干细胞基金会、爱德华·马林克罗特基金会、传统医学研究所的支持。 Yuki Oka 是加州理工学院陈天桥和克丽丝陈神经科学研究所的附属教员。


冈由纪  Yuki Oka
生物学教授;传统医学研究所研究员

2002 年,东京大学文学士;博士,2007年。助理教授,加州理工学院,2014-20;教授,2020年-;陈学者,2019-2022; HMRI 研究者,2021 年-。

研究总结
了解稳态调节动机行为的神经和分子基础。
轮廓

研究兴趣:稳态调节动机行为的神经和分子基础。

我们研究的长期目标是了解大脑如何整合内部身体状态和外部感觉信息来维持体内的稳态。

体内平衡是保持我们的内部环境恒定和最佳生存的基本功能。如果内部状态偏离正常环境,大脑会检测到这种变化并触发补偿反应,例如摄入行为和荷尔蒙分泌。大脑如何监测内部状态,以及如何产生信号来促使我们做出适当的行为/生理反应?

我们的实验室使用体液稳态作为模型系统来解决这些关键问题。内部水或盐的消耗直接触发特定的动机、口渴或盐的食欲,进而驱动独特的行为输出(喝水和盐的摄入)。这种直接因果关系为研究稳态调节的各个方面提供了一个理想的平台:(1)内部液体平衡的检测,(2)大脑中消耗信号的处理,以及(3)将此类大脑信号转化为特定的动机行为。我们的目标是通过结合遗传学、药理学、光遗传学和光学/电生理记录技术等多学科方法来解剖、可视化和控制每个步骤背后的神经回路。

Jimmy O. Yang: Guess How Much?-2023 Special (Full Audio Version)

高兴

感动

同情

搞笑

难过

拍砖

支持

鲜花

发表评论 评论 (1 个评论)

回复 change? 2023-11-22 03:50
Newly Discovered Brain Circuit Controls An Aversion to Salty Tastes

Sodium in the form of table salt helps make French fries a tasty snack and bacon a delicious indulgence, but it is also a vital nutrient for the proper functioning of our bodies, playing a role in the movement of your muscles, the signaling of your neurons, and many other important processes.

Having the right amount of sodium in your body is so crucial, in fact, that parts of your brain work hard to make sure you're getting the salt that you need. If you've ever been hit by a sudden craving for potato chips, that may have been your brain at work. On the other hand, if you're thirsty, salted snacks might sound like the last thing you to eat. Now, new research from Caltech scientists is showing us more about how the brain regulates when the flavor of salt is yuck or yum.

"Low sodium concentration is palatable, while higher concentrations—for example, ocean water—taste disgusting," says Yuki Oka, Professor of Biology and Heritage Medical Research Institute Investigator. "But when you're really in need of salt, you don't mind the bad taste. The palatability or 'tastiness' of salt changes based on its concentration and the body's internal sodium need."

The body meticulously regulates blood sodium levels to stay within a narrow range of 135 to 145 millimolar. This is accomplished through precise control of salt consumption and retention. To keep sodium levels precisely balanced, the brain must control both attraction and aversion to salt. In 2019, researchers in the Oka lab discovered the brain circuit that drives cravings for salt in mice. Stimulating these "salt-appetite" neurons, located at the base of the skull in a region called the hindbrain, triggered an immediate appetite for salty food. But the mechanisms regulating an aversion to salty tastes remained unanswered.

New findings from the Oka lab reveal a distinct neural circuit in the mouse brain responsible for regulating tolerance towards the negative taste associated with sodium. These neurons are located in the forebrain, far from the salt-appetite neurons. Unlike the previously identified salt-appetite neurons, activation of the tolerance neurons does not prompt active seeking of sodium. Instead, activity of these neurons enables mice to accept or tolerate high levels of salt that would usually be aversive, in order to efficiently replete sodium levels in the body. Blocking the tolerance neurons results in mice rejecting aversive salt, even if low on sodium. The simultaneous operation of forebrain tolerance and hindbrain appetite circuits is crucial for maintaining sodium levels within the body.

The researchers found that the tolerance neurons are not directly connected to the salt appetite neurons, and appear to function independently. How, then, does the body regulate the activity of the newly discovered circuits?

The new study shows that, intriguingly, the tolerance neurons have receptors for the hormone prostaglandin E2 (PGE2) on their surfaces, suggesting that their activity is modulated by this hormone circulating through the bloodstream. This is a novel revelation—prostaglandin, commonly associated with inflammation, had not previously been linked to sodium intake. According to Yameng Zhang, a graduate student in the Oka lab and the lead author of the new study, "This unexpected association between prostaglandin and sodium consumption raises important questions regarding how an inflammatory state might influence sodium intake, offering new insights into the interplay between sodium levels and the body's pro-inflammatory condition."

The results are reported in a paper appearing in the journal Cell on November 20.

The paper is titled "Parallel Neural Pathways Control Sodium Consumption and Taste Valence." A graduate student, Yameng Zhang is the first author, with additional co-authors from Caltech including graduate student Tongtong Wang, former postdoctoral scholar Allan-Hermann Pool (now an assistant professor at the University of Texas, Southwestern), postdoctoral scholar Lu Liu, and former Caltech undergraduate Elin Kang. Other contributors hail from Spatial Genomics Inc (Bei Zhang, Liang Ding, and Kirsten Frieda) and the University of Washington (Richard Palmiter). The study was supported by the National Institutes of Health, the Alfred P. Sloan Foundation, the New York Stem Cell Foundation, the Edward Mallinckrodt Foundation, the Heritage Medical Research Institute. Yuki Oka is an affiliated faculty member of the Tianqiao and Chrissy Chen Institute for Neuroscience at Caltech.

facelist doodle 涂鸦板

您需要登录后才可以评论 登录 | 注册

关于本站 | 隐私政策 | 免责条款 | 版权声明 | 联络我们 | 刊登广告 | 转手机版 | APP下载

Copyright © 2001-2013 海外华人中文门户:倍可亲 (http://www.backchina.com) All Rights Reserved.

程序系统基于 Discuz! X3.1 商业版 优化 Discuz! © 2001-2013 Comsenz Inc. 更新:GMT+8, 2023-11-22 07:19

倍可亲服务器位于美国圣何塞、西雅图和达拉斯顶级数据中心,为更好服务全球网友特统一使用京港台时间

返回顶部