下载APP | 繁體版 | 发布广告 |常用工具

黄仁勋:我从不在乎市场份额,英伟达唯一目标...

京港台:2024-10-23 12:43| 来源:量子位 | 我来说几句


黄仁勋:我从不在乎市场份额,英伟达唯一目标...

来源:倍可亲(backchina.com) 专题:抄底还是跑路?美股最新动态

  “这是我听过的黄仁勋最好的采访!”

  英伟达CEO黄仁勋的一场炉边谈话再次引起热议:

  英伟达从来没有一天谈论过市场份额

  我们所讨论的只是:如何创造下一个东西?如何将过去需要一年才能完成的飞轮缩短到一个月?

  面对Azure和AWS等正在自主构建ASIC芯片的云计算大客户,老黄打了个比喻:

  公司受到鱼塘大小的限制,唯一的目标是用想象力扩大鱼塘。(指创造新市场)

  当然了,除了提及英伟达,老黄还讨论了AGI的智能扩展、机器学习的加速、推理与训练的重要性……

  虽然时长感人(近1个半小时),但一大波网友已经看完并交起了作业(开始卷了是吧!)

  网友:学起来!学起来!

  黄仁勋:未来推理的增长将远大于训练

  鉴于视频较长,量子位先直接给大家划重点了,老黄的主要观点包括(省流版):

  “口袋里的AI助理”将很快以某种形式出现,尽管最初可能会不完美;

  英伟达的竞争优势在于建立了从GPU、CPU、网络到软件和库的全栈平台

  扩展人工智能的重点已从训练前转移到训练后和推理;

  推理(inference)时计算将作为一个全新的智能扩展向量;

  未来推理的增长将远大于训练的增长;

  闭源和开源将共存,开源模型可能用于创建特定领域的应用程序;

  ……

  (以下为重点部分整理)

  Q:关于个人AI助理的发展前景,您认为我们何时能在口袋里装上一个无所不知的AI助理?

  A:很快就会以某种形式出现。这个助理一开始可能不够完美,但会随着时间推移不断改进,这是技术发展的必然规律。

  Q:目前AI领域的发展变化速度是否是您见过最快的?

  A:是的,这是因为我们重新发明了计算。在过去10年里,我们将计算的边际成本降低了10万倍,而按照摩尔定律可能只能降低100倍

  我们通过以下方式实现了这一点:

  引入加速计算,将原本在CPU上效率不高的工作转移到GPU上

  发明新的数值精度

  开发新架构(如张量核心)

  采用高速内存(HBM)

  通过MVLink和InfiniBand实现系统扩展

  这种快速发展使我们从人工编程转向了机器学习,整个技术栈都在快速创新和进步。

  Q:模型规模扩展方面有哪些变化?

  A:以前我们主要关注预训练模型的扩展(重点在模型大小和数据规模),这使得所需计算能力每年增加4倍。

  现在我们看到后训练(post-training)和推理阶段也在扩展。人类的思维过程不可能是一次性完成的,而是需要快思维、慢思维、推理、反思、迭代和模拟等多个环节。

  而且,以前人们认为预训练难,推理简单,但现在都很难了。

  Q:与3-4年前相比,您认为NVIDIA今天的优势是更大还是更小?

  A:实际上更大了。过去人们认为芯片设计就是追求更多的FLOPS和性能指标,这种想法已经过时。

  现在的关键在于整个机器学习系统的数据流水线(flywheel),因为机器学习不仅仅是软件编程,而是涉及整个数据处理流程。从一开始的数据管理就需要AI参与。数据的收集、整理、训练前的准备等每个环节都很复杂,需要大量处理工作。

  Q:与Intel等公司相比,Nvidia在芯片制造和设计方面有什么不同的策略?

  A:Intel的优势在于制造和设计更快的x86串行处理芯片,而Nvidia采取不同策略:

  在并行处理中,不需要每个晶体管都很出色

  我们更倾向于使用更多但较慢的晶体管,而不是更少但更快的晶体管

  宁愿有10倍数量、速度慢20%的晶体管,也不要数量少10倍、速度快20%的晶体管

  Q:关于定制ASIC(如Meta的推理加速器、亚马逊的Trainium、Google的TPU)以及供应短缺的情况,这些是否会改变与NVIDIA的合作动态?

  A:这些都是在做不同的事情。NVIDIA致力于为这个新的机器学习、生成式AI和智能Agent世界构建计算平台。

  在过去60年里,我们重新发明了整个计算技术栈,从编程方式到处理器架构,从软件应用到人工智能,每个层面都发生了变革。我们的目标是创建一个随处可用的计算平台

  Q:NVIDIA作为一家公司的核心目的是什么?

  A:构建一个无处不在的架构平台。我们不是在争夺市场份额,而是在创造市场。我们专注于创新和解决下一个问题,让技术进步的速度更快。

  Q:NVIDIA对待竞争对手和合作伙伴的态度是什么?

  A:我们对竞争很清醒,但这不会改变我们的使命。我们向AWS、Azure等合作伙伴提前分享路线图,保持透明,即使他们在开发自己的芯片。对于开发者和AI初创公司,我们提供CUDA作为统一入口。

  Q:对OpenAI的看法如何?如何看待它的崛起?

  A: OpenAI是我们这个时代最重要的公司之一。虽然AGI的具体定义和时间点并不是最重要的,但AI能力的发展路线图将会非常壮观。从生物学家到气候研究者,从游戏设计师到制造工程师,AI已经在革新各个领域的工作方式。

  我非常欣赏OpenAI推进这一领域的速度和决心,并为可以资助下一代模型感到高兴。

  Q:您认为模型层是否正在走向商品化,以及这对模型公司的影响是什么?

  A:模型层正在商品化,Llama的出现使得构建模型变得更加便宜。这将导致模型公司的整合,只有那些拥有经济引擎并能够持续投资的公司才能生存。

  Q:您如何看待AI模型的未来,以及模型与人工智能之间的区别?

  A:模型是人工智能必不可少的组成部分,但人工智能是一种能力,需要应用于不同的领域。我们将看到模型层的发展,但更重要的是人工智能如何应用于各种不同的应用场景。

  Q:您如何看待X公司,以及他们建立大型超级集群的成就?

  A:他们在19天内(通常需要3年)建造了一个拥有100,000个GPU的超级计算机集群。这展示了我们的平台的力量,以及我们能够将整个生态系统集成在一起的能力。

  Q:是否认为分布式计算和推理扩展将会发展到更大规模?

  A:是的,我对此非常热情和乐观。推理时计算作为一个全新的智能扩展向量,与仅仅构建更大的模型截然不同。

  Q:在人工智能中,是否很多事情只能在运行时完成?

  A:是的,很多智能工作不能先验地完成,很多事情需要在运行时完成

  Q:您如何看待人工智能的安全性?

  A:我们必须构建安全的人工智能,并为此需要与政府机构合作。我们已经在建立许多系统来确保人工智能的安全性,并需要确保人工智能对人类是有益的。

  Q:你们公司超过40%的收入来自推理,推理的重要性是否因为推理链而大大增加?

  A:没错,推理链让推理的能力提高了十亿倍,这是我们正在经历的工业革命。未来推理的增长将远大于训练的增长

  Q:你们如何看待开源和闭源人工智能模型的未来?

  A:开源和闭源模型都将存在,它们对于不同的行业和应用都是必要的。开源模型有助于激活多个行业,而闭源模型则是经济模型创新的引擎。

  对于上述这些,你怎么看?

  这家最好!股市开户分批买入大盘股指基金

相关专题:美股动态

推荐:美国打折网(21usDeal.com)    >>

        更多科技前沿 文章    >>

【郑重声明】倍可亲刊载此文不代表同意其说法或描述,仅为提供更多信息,也不构成任何投资或其他建议。转载需经倍可亲同意并注明出处。本网站有部分文章是由网友自由上传,对于此类文章本站仅提供交流平台,不为其版权负责;部分内容经社区和论坛转载,原作者未知,如果您发现本网站上有侵犯您的知识产权的文章,请及时与我们联络,我们会及时删除或更新作者。

关于本站 | 隐私政策 | 免责条款 | 版权声明 | 联络我们 | 刊登广告 | 转手机版 | APP下载

Copyright © 2001-2025 海外华人中文门户:倍可亲 (http://www.backchina.com) All Rights Reserved.

程序系统基于 Discuz! X3.1 商业版 优化 Discuz! © 2001-2013 Comsenz Inc. 更新:GMT+8, 2025-5-5 13:11

倍可亲服务器位于美国圣何塞、西雅图和达拉斯顶级数据中心,为更好服务全球网友特统一使用京港台时间

返回顶部