下载APP | 繁體版 | 发布广告 |常用工具

Meta 首席 AI 科学家:Sora“注定失败”

京港台:2024-2-25 00:42| 来源:IT之家 | 评论( 3 )  | 我来说几句


Meta 首席 AI 科学家:Sora“注定失败”

来源:倍可亲(backchina.com)

  OpenAI 新推出的 AI 视频生成模型 Sora 一经发布就成为业界焦点,不过 Meta 首席人工智能科学家 Yann LeCun 却并不认同其价值。

  LeCun 主要反对 OpenAI 声称 Sora 将最终实现“构建通用物理世界模拟器”的目标。他认为,如果真要实现,OpenAI 当前的方法完全偏离了轨道。

  LeCun 在 X 平台(原 Twitter)发帖称:“通过生成像素来模拟世界的行为,就像曾经被广泛弃用的‘通过合成进行分析’一样,既浪费资源又注定失败。”

  生成模型 vs. 判别模型:老生常谈的辩论

  据IT之家了解,LeCun 被誉为“人工智能教父”之一,也是其中最直言不讳、敢于批评的人。与其他两位“教父”对人工智能发展表达担忧不同,而 LeCun 则继续在 Meta 推进研究,同时不吝于批评竞争对手。

  此次他的评论涉及机器学习领域中生成模型和判别模型的长期争论。LeCun 认为,生成模型通过“解释性潜在变量”生成像素的方法效率低下,无法充分应对三维空间中复杂预测带来的不确定性。

  简单来说,他认为这些模型试图“推断”太多无关紧要的细节,就像试图计算足球的轨迹,却要分析每一个足球材料的作用,而不是仅仅分析质量和速度。

  他在回复帖子时说:“如果你只是想生成视频,这样做没什么问题。但如果你想理解世界如何运转,那么这种方法注定失败。”

  LeCun 的 V-JEPA 模型:另一种选择

  LeCun 承认,到目前为止,生成式模型在大型语言模型(如 ChatGPT)上取得了一定成功,“因为文本是离散的,符号数量有限”。但如果像 Sora 那样模拟世界,就不仅仅是处理几个字符了。

  作为 OpenAI 方法的竞争对手,LeCun 上周公布了他在 Meta 开发的模型 V-JEPA,名为“视频联合嵌入预测架构”(V-JEPA)。

  Meta 在一篇博客文章中宣称:“与试图填充所有缺失像素的生成式方法不同,V-JEPA 可以丢弃不可预测的信息,从而将训练和样本效率提高 1.5 到 6 倍。”

推荐:美国打折网(21usDeal.com)    >>

        更多科技前沿 文章    >>

【郑重声明】倍可亲刊载此文不代表同意其说法或描述,仅为提供更多信息,也不构成任何投资或其他建议。转载需经倍可亲同意并注明出处。本网站有部分文章是由网友自由上传,对于此类文章本站仅提供交流平台,不为其版权负责;部分内容经社区和论坛转载,原作者未知,如果您发现本网站上有侵犯您的知识产权的文章,请及时与我们联络,我们会及时删除或更新作者。

关于本站 | 隐私政策 | 免责条款 | 版权声明 | 联络我们 | 刊登广告 | 转手机版 | APP下载

Copyright © 2001-2025 海外华人中文门户:倍可亲 (http://www.backchina.com) All Rights Reserved.

程序系统基于 Discuz! X3.1 商业版 优化 Discuz! © 2001-2013 Comsenz Inc. 更新:GMT+8, 2025-6-5 16:57

倍可亲服务器位于美国圣何塞、西雅图和达拉斯顶级数据中心,为更好服务全球网友特统一使用京港台时间

返回顶部